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Abstract

A most favorably oriented crystal located at a free surface of a f.c.c. polycrystal sub-

ject to creep under cyclic tension and compression of high-cycle fatigue is considered. An

extrusion in this crystal is shown to be produced by a positive slip in one thin slice "P" and a

negative slip in a closely located slice "Q". An initial tensile strain 46 in the thin slice "R"

sandwiched between P and Q causes a positive initial shear stress an P and a negative one

in Q. It is shown that the extrusion growth causes a tensile strain in R, which can activate a

second slip system giving a creep strain with a tensor component. ., It has the same effect

as the initial strain 4 8 tin causing this difference in shear stresses in P and Q and gives much

additional extrusion growth. The extent of intrusion and extrusion is important in this study

of crack initiation.
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Introduction

Single crystal test at room temperature (Taylor, 1938) have shown that, under stress,

slip occurs along certain directions on certain planes. Slip, the result of displacement of dislo-

cations, has been found to depend on the resolved shear stress and not on the normal stress on

the sliding plane. This dependency of slip on the resolved shear stress, known as Schmid's

law, has been shown by Parker, 1961 to hold also under cyclic loadings. Deformation of sin-

gle crystals at elevated temperatures (Johnson, et al, 1953, 1955) also occurs by slip in pri-

marily the same slip systems that are operative at room temperature. This slip rate was found

to depend on the resolved shear stress. This agrees with Gilman's 1969 observation that this

dislocation velocity varies with the resolved shear stress.

Following the clue provided by the observation of extrusions and intrusions in fatigue

specimens (Forsyth, 1954), a number of distinguished investigators; Mott 1958, Cottrell and

Hull 1957, Thompson 1959, McEviley and Machlin 1959, Wood 1956 and others have pro-

posed different theories of fatigue crack initiation. The above early fatigue crack initiation

theories primarily consider the paths of dislocation movement without considering the

resolved shear stress induced by this movement. This seems to be the main cause for these

theories to be not quite satisfactory, as pointed out by Kennedy 1961. Lin and Ito 1969 pro-

posed first quantitative micromechanic theory of fatigue crack initiation. This theory calcu-

lates the stress fields produced by slip in fatigue bands and has been shown to agree with

nearly all experimental observations (Lin, 1977, 1981). This theory is briefly reviewed here

and is applied to the present analysis.
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Initial defects always exist in metals and cause an initial stress field. Let the initial

resolved shear stress be denoted by z"/ . During loading, when the resolved shear stress in

some region reaches the critical shear stress tC, slip occurs. After unloading, this slip remains

and induces a residual resolved shear stress TR. The resolved shear stress due to loading is

denoting by TA. The total shear stress after reloading is

(1)

Consider a most favorably oriented crystal at a free surface of a f.c.c. polycrystal as

shown in Fig. 1. For an extrusion to start in a thin slice R sandwiched between two slices P

and Q, positive shear must occur in P and negative in Q. The initial shear stress field T',

favorable for this sequence of slip, clearly is one having positive shear stress in P and nega-

tive in Q. Such an initial stress field can be provided by an initial tensile strain E4a in R.

This positive f4/aa can be provided by a row of interstitial dislocation dipoles and a negative

El= by vacancy dislocation dipoles as shown by Lin and Ito 1969.

A tensile loading 't22 on the polycrystal (Fig. 1) produces a positive TA in the whole

crystal. Taking T' to be positive in P and negative in Q, we have T1 + TA in P reaching the

critical shear stress tc first; and hence, P slides. Due to the continuity of stress field, slip in P

relieves not only the positive shear stress in P but also in Q (Lin and Ito, 1969, Lin 1977).

Hence, this slip increases the negative resolved shear stress in Q to cause Q to slide more

readily in the reverse loading. The negative slip in Q relieves the negative shear stress not
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only in Q, but also in P, thus causing P more readily to slide in the next forward loading.

This process is repeated for every cycle thus providing a natural gating mechanism for a

monotonic buildup of local slip strain E'p in P and Q, pushing R out of the free surface and

starts an extrusion. Interchanging the signs of the initial stresses in P and Q initiates an intru-

sion instead of an extrusion. This theory is extensively supported by metallurgical observa-

tions (Lin, 1977).

Extent of Extrusion

The buildup of this local slip strain CeaP in P and Q is caused by the positive and nega-
tive initial shear stresses T1 p which, in turn, is caused by Eaa in R. If R were cut out, this

free length of R would be longer than the slot cut by an amount referred to as the "static

extrusion" (Mughrabi et al, 1983). This E{a causes an initial compression ta, in R. As the

extrusion grows under cyclic loading, the slice R increases in length. This elongation causes

the compression to decrease. A question has been raised as to whether the extrusion growth

will cease after the extrusion has reached the static extrusion. Lin, et al., 1988 have shown

that the residual tensile stress 'tact caused by elongation in R due to extrusion can cause

changes of resolved shear stresses in all twelve slip systems. The resolved shear stress in one

slip system may reach the critical and slide. The creep strain c& caused by slip in this sys-

tem has a tensor component E'aa just like el in causing the positive and negative T1/ 0, respec-

tively, in P and Q. This secondary slip has been shown by Lin, et al., 1988 to increase

greatly the extent of extrusion and intrusion in time-independent slip. This paper shows the

this secondary slip also increases this extent of intrusion and extrusion in fatigue with creep.
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Residual Stress Field Caused by Creep Strain

The creep rate depends on the resolved shear stress "r which is given in Eq. 1. as the

sum of the initial, applied and residual shear stresses. To calculate r, the analogy of creep

strain and applied force is applied. It has been shown that the equf'alent body force per unit

volume along xi - axis due to creep strain Eq. is

Fi = -(?,5ij c i + 2Ge,)(2

where ?X and G are Lame's constants and 8i is the Kronecker delta. The repetition of sub-

script denotes summation and the subscript after comma denotes differentiation, with respect

to the coordinate variable. The equivalent surface force per unit area along the x i - axis also

has been shown as

Si = (Xc & + 2G E.) vj

where vi is the cosine of the angle between the exterior normal to the surface and the

xi - axis.

From a given eq, we obtain Fi and Si from Eqs. (2) and (3). Then we apply this F i

and Si to the body and obtain the strain distribution el) in this body by elastic solution. The

residual stress field in this body is then

(4)

This analogy becomes Duhamel's analogy for thermal stress (Lin, 1968), if the creep strain eq

is replaced by thermal strain ET.
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The lengths of the strips P, Q and R along the x3-direction are much larger than the

thickness: the thickness also is much smaller than their inclined lengths shown in Fig. 1.

Hence, strains in the major central portion of the strips are taken to be of generalized plane

strain, i.e.

Ui  Ui(xi, X2) i = 1,2,3
(5)

This gives

tzj = 2u 8 j-6O + I(u, + uji) 2 (6)

where 0 =u + u2,2 and v is Poisson's ration. Substitution of the expression into the condi-

tions of equilibrium yields
J

V2u a + I a0 + = 0, cc -- 1,2
1-2u ax, G (7)

and

V 2 U3 + F3 = 0
G (8)

where

,V2 = 2 + 2

where F. and F3 can be either the applied forces or the equivalent forces.

The above two equations (7) and (8) are not coupled and can be solved separately.

Lin and Lin 1974 and Lin, et al., 1988 have shown the solution of this stress field caused by
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Fat by using Airy's stress functions. The solution of the displacement fields and then the

stress fields caused by F3 also has been shown by Lin, et al., 19?. Consequently the stress

fields caused by the equivalent forces due to creep strain can readily be calculated.

The twelve slip systems of a f.c.c. crystal are shown in Fig. 2. The most favorable

slip system in the most favorably oriented crystal making 450 with the direction of loading is

identified with a2 (Fig. 2). During fatigue loading, this buildup of large local creep shear

strain - in P and Q causes R to elongate, inducing an appreciable direct stress t.. It has

been shown by Lin, et al., (1988) that there are four slip systems c1. c3, d1 and d2 equally

favorable under ram. Among the four c3 is the most favorable under this applied load C2 2 .

Hence, c3 is considered to be active in R.

42

Figure 2. Crystallographic Directions of a f.c.c. Crystal
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The normal to the slip plane 3 and the slip direction a of the slip system a, lie in the

x x2 plane. The equivalent forces F.. caused by slip Ec5 in the a, - slip system are in this

plane. Hence plane strain solutioa satisfying the differential equation (7) was used (Lin and

Lin 1974). However the slip direction 4 and the normal to the slip plane 71 of the c3 slip sys-

tem are not in the x, x, - plane. The equivalent forces caused by slip E-n in the c3 slip sys-

tem does not lie in the x, x-, - plane. Hence the equivalent force has a component F3. Then

the stress fields caused by the components F3 lying in the plane are solved by Eq. 7 and those

caused by the component F3 are solved by Eq. 8. (Lin, et al., 1988). This shows how this

residual stress caused by creep in the primary slip system Ecp and those in the secondary slip

system c are analytically calculated.

Numerical Calculations

The dimensions of the most favorably oriented crystal at the free surface of a polycry-

stal of pure aluminum are shown in Fig. 1. The thickness in P and Q is 0.01 g, and the

thickness in R is 0. . along the x2 direction. As shown in Fig. 4, the initial shear stress in

P, Q is taken to vary linearly from 0 at the interior boundary to 1.1 X 104 Pa (1.6 psi) at the

free surface. This is expressed as

1.1 x 104(l .

From equilibrium conditions

0.1 a a 
2

0_. 'rt(a) = -2ftd (s)ds = -2.2 x 104(a-
N- 0 100 x,9



c{"(c) = E ) ta = 0.412 x 10- (o X- a 2

E 100 x,1

The static extrusion is then

5M_

e (a)da = 0.687 x 10- 2

0

The creep strain Eci at this free surface corresponding to the above static extrusion is 0.486.

The single crystal creep property is taken from tests at 204.4°C (400'F) performed by John-

son et al, 1953, 1955 and is represented approximately by a linear relation (Lin and Lin, 1978,

1980).

Cp = 3.26 x 10- 7[Capl-1.3167 x 106N/m2(190.1 psi)]/min

where the dot on top denotes the time derivative and ta is the resolved shear stress in N/rm2

in the active slip system. Creep strain is highly localized in slip bands. The cre-ep rate in this

band is much higher than the average rate of the whole crystal and is assumed to be 1000

times that of the crystal giving

4 = 3.26 x 104('rap-1.3167 x 106N/m2)/min
(9)

Referring to Fig.1, the thin strips P, Q and R are divided along their lengths into thin

parallelogram grids. For numerical calculation, the creep strain in each grid is assumed to be

constant. Hence, there is no creep strain gradient and no equivalent body force in each grid.

However each grid is subject to a set of equivalent surface forces on the boundary. The aver-

age residual resolved shear stress in the ith grid caused by constant creep strain c'p in the jth

grid or E' in the kth grid was then calculated using the generalized plane strain semi-infinite
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solid solution given by Eqs. 7 and 8 and is denoted by -C(i, c3; j, c4P) or -C(i, cc3; k, )

With €O occurring only in P, Q and c' in R, the residual resolved shear stress in the ith grid

due to creep strain F' and E ,, is then written as

-C(i, c43; j, a)cc5 - C(i, c43; k, 4T)E1,

-C(i, 4ii; j, c4P),~-c C(i, 4r1; k, 7l)ck (10)

The repetition of subscript "j" denotes summation covering all grids with cc and "k" summa-

tion covering all grids with e-. The resolved shear stress in the ith grid is writtcn as

to, + VAX0,• + 't(11)

From Eqs. 9 through 11 we can write

,= 3.26 x 10-4(1tp - 1.3167 x 106N/m2(190.1 psi)/min

=3.26 x 10-[tf1. + ' - C(i, c; j,

- C(i, c43; k, )cnk - 1.3167 x 106N/m2(190.1 psi)]
(12)

A similar equation can be written for ici,

From the above, the creep strain rates in grids with resolved shear stress greater than

this critical 1.3167 x 106N/m 2 ( 190.1 psi) can be determined.

11



Write Eq. 12 in matrix form

+= +B(t)}

(13)
subject to the initial condition {e(to)} = {Eo}. where

Bi = 3.26 x 10-4( 4lapi + - 1.316 x 106N/m2)
(14)

The series solution of Eq. 13 is given by Frazer et al, 1963. The complementary solu-

tion of Eq. 13 is given as

{Ec} = e[Al(t - .){Eo}

= f{[/] +[A](t- to,)+ +. + [a]P(t - t)P + .. }{Co}

P!' (15)

where Eo is this creep strain at to, e, the base of the natural logarithm, and [I] is the identify

matrix. The particular solution is obtained by multiplying Eq. 13 by e[AII. This gives

d (e[A]{EFp}) = e-[Alt{B(t)}dt{

and

t

{cEp} = e+[Alt fe-A(s - '){B(s)}ds

The cyclic loading is taken to be rectangular: i.e., tension and compression are applied instan-

taneously and remain constant during each half cycle.

{e} =- {[/] - e[A](t -
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{}= {I(t- t,) + -. [A](t- to)2 + .... + [A]P 1-(t- to)f
2! P

(16)

To calculate the creep strain distribution in a given time interval 0 to T. This interval

is divided into N steps with At = TIN. The At is chosen tc be small enough, so the maximum

eigenvalue of [A]At is less than unity. Then the matrix [A]' (t - to)' approaches a zero matrix

as "n" approaches infinity. The series solution of Eqs. 15 and 16 will converge.

For each time step At, take the first p-terms of {ec} and {e} to obtain the creep

strains. The smaller the At and the more terms p used, the more accurate will be the results.

In the previous work (Lin and Lin, 1979, 1982), the creep strain rate was assumed to be con-

stant ir At. The solution corresponds to p = 1. It has been found that using this series solu-

tion reduces the numerical calculation by more than six times for the same accuracy in

evaluating the creep strain distributions. In the present example, the magnitude of applied

load was 2.7326 x 106 N/mm 2 (380psi) giving V' = 1.366 x 106 N/rn2 (190psi) Two loading

frequencies were calculated; one is 0.345 cycles/min and the other is 345 cycle/min. In the

high frequency loading the half period was equally divided into ten time increments and three

terms in the series solution were used. The creep strain in the second slip system E£.. in R

versus the distance from the free surface at different cycles of loading under a frequency of

345 cycles per minute was calculated and is shown in Fig. 3. The creep strain F- in the

second slip system causes some Eaa which in turn cause additional positive +T a in P and

negative -'4ap in Q. The creep rate in P and Q depends on the sum of the initial and the resi-
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dual shear stresses t + r4o in P and Q. This sum at different stages of loading is shown in

Fig. 4. Note that this sum decreases considerably slower in the cases with the secondary slip

T than the case without. When this sum approaches zero, the extrusion approaches static

extrusion and ceases to grow. The creep shear strain distributions £c'3 in P and Q at different

cycles of loading were calculated for the cases with and without secondary slip and are shown

in Fig. 5. The £1''s at the free surface versus cycles of loading n are shown in Fig. 6 this

strain versus loading time N/f is shown in Fig. 7. Note that with no secondary slip, the extru-

sion growth ceases when the extrusion approaches the static extrusion. The creep strain E'.5

in P and Q at the free surface, which represents the amount of extrusion or intrusion with the

secondary slip is much higher than that without the secondary slip. Calculations also have

been made at a frequency of loading of 10 cycles/min, and the creep strain in P and Q versus

N/f have been found to be essentially the same as that at 345 cycles/min. In the high cycle

range, the creep strain depends mainly on the time of loading. Similar calculations were

made on a low frequency loading 0.345 cycles/min. The creep strain at this low frequency

depends on the number of cycles as well as N/f the time of loading.
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Conclusions

The amount of creep shear strains c' in P and Q at the free surface is a measure of

the amount of extrusion and intrusion and, hence, is taken as a measure of fatigue crack initia-

tion. The calculated results indicate that this surface creep strain depends only on the time of

loading N/f in high frequency range and becomes dependent also on the number of loading

cycles in the low frequency range.

Creep strain in the secondary slip system has a tensor component F-10 which has the
same effect in causing T1 in P and Q as '. Hence this creep strain E'5 in P and Q with

this secondary slip is much larger than that without. Without the secondary slip, the extrusion

ceases when it reaches the static extrusion. However, with the secondary slip, extrusion

grows considerably beyond the static extrusion. 'This may be a main cause for the extent of

extrusion to be much more in a face-centered polycrystal than that in a hexagonal polycrystal.

The stress intensity factor of crack depends on the extent of extrusion on intrusion. Hence,

this extent is important for the study of fatigue crack initiation.
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